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Abstract

Borda Count is one of the earliest and most important vot-
ing rules. Going far beyond voting, we summarize recent
advances related to Borda in computational social choice
and, more generally, in collective decision making. We first
present a variety of well known attacks modeling strate-
gic behavior in voting—including manipulation, control, and
bribery—and discuss how resistant Borda is to them in terms
of computational complexity. We then describe how Borda
can be used to maximize social welfare when indivisible
goods are to be allocated to agents with ordinal preferences.
Finally, we illustrate the use of Borda in forming coalitions
of players in a certain type of hedonic game. All these ap-
proaches are central to applications in artificial intelligence.

1 Introduction
More than 230 years ago, Borda (1781) proposed one of
the most important and influential voting rules up to date.
It is simple and strikingly elegant: When there are m can-
didates, the voters rank them by a linear order according
to their preferences; a candidate in ith position of a voter’s
ranking scores m − i points; and the candidates with the
most points win. Borda and its modifications have been
widely used in political elections (e.g., in Slovenia or to
elect the leader of the Irish Green Party) or by academic
institutions. For instance, the French Academy of Sciences
adopted this rule to elect its members for about two decades
in the 18th century. The debates between the Chevalier de
Borda and the Marquis de Condorcet, both members of
this Academy, about whose voting method is better are leg-
endary. Social choice theorists have continued to fiercely
dispute this question up to now; for example, Saari (2003;
2006) champions Borda, a view that Risse (2005) strongly
disagrees with. The goal of this survey, however, is not
a social-choice-theoretic treatise of Borda compared with
other voting rules;1 rather, our goal is to summarize recent
advances related to Borda within the field of computational
social choice and, going far beyond voting alone, collective
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1For more details about the social-choice-theoretic properties
of Borda, we refer to the recent book chapters by Zwicker (2016)
and Baumeister and Rothe (2015).

decision making in general, such as the allocation of indivis-
ible goods and coalition formation in hedonic games.

The first and foremost purpose of this paper is to present
the standard attacks that have been proposed within compu-
tational social choice to model strategic behavior in voting,
such as manipulation, control, and bribery attacks of various
types. While we will focus on Borda’s voting rule to illus-
trate each such attack and to discuss how resistant Borda
is to them in terms of computational complexity, we will
also mention in passing some related results for other voting
rules. This will give an overview of some of the most excit-
ing work in computational social choice—having evolved to
become an established subarea of distributed AI and multi-
agent systems—during the last decades (see Section 2).

Next, in Section 3, we leave voting behind and first show
how Borda can be used to maximize social welfare when
indivisible goods are to be allocated to agents with ordinal
preferences. Then we turn to hedonic games where a num-
ber of players, each having preferences over the coalitions
they can join, are faced with the problem of coalition for-
mation. Again, we will show how Borda can be used in this
context and present some recent results. All three fields—
preference aggregation by voting, the allocation of indivis-
ible goods, and hedonic games—are central to certain AI
applications. Voting, for example, has been employed in AI
subareas as diverse as automated scheduling (Haynes et al.
1997), collaborative filtering (Pennock, Horvitz, and Giles
2000), computational linguistics (Oflazer and Tür 1997), in-
formation extraction (Sigletos et al. 2005), planning (Ephrati
and Rosenschein 1997), recommender systems (Ghosh et al.
1999), and web searching (Dwork et al. 2001).

Finally, we highlight some open questions in Section 4.

2 How Resistant is Borda to Manipulative
Attacks in Voting?

In this section we survey some of the most exciting work
in computational social choice of the previous decades: the
study of strategic behavior in voting, and how computational
complexity can be used as a barrier against such attacks that
aim at influencing the outcome of an election. Three basic
attack types are distinguished in the literature: manipulation,
control, and bribery. While focusing on Borda when explain-
ing them, we will also consider various other voting rules.
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2.1 Manipulation
Suppose we are given an election (C, V ) with five candi-
dates, C = {a, b, c, d, e}, and the following list of five votes
in V , each cast by an honest voter:

v1 : d c a e b v2 : d c b a e
v3 : d b e a c v4 : e c b a d
v5 : c b d a e

where a vote like v1’s (d c a e b) means that v1 prefers d
to c, c to a, etc. Using Borda in (C, V ), a scores 6 points,
b 10 points, c 13 points, d 14 points, and e 7 points, so d
alone wins. Now suppose that an insincere voter, v6 whose
truthful vote is c d b a e, joins the election. Knowing the
other voters’ preferences, however, v6 strategically casts the
vote c a e b d, so c alone wins the election (C, V ∪{v6}) with
a score of 17, while a, b, d, and e now have 9, 11, 14, and 9
points, respectively. (Casting v6’s truthful vote would have
made both c and d win the election with 17 points, but v6
wants to make sure that her favorite candidate c is the only
winner.) Thus v6 has successfully manipulated the election.

Motivated by a famous result of Gibbard (1973) and Sat-
terthwaite (1975) (which, roughly speaking, says that every
reasonable voting rule is manipulable), Bartholdi III, Tovey,
and Trick (1989) proposed to use computational complexity
to prevent manipulation from happening or being successful.
They defined the constructive manipulation problem (CM):
Given an election (C, V ), a distinguished candidate c ∈ C,
and a strategic voter s, is it possible for s to cast a vote such
that c is the winner of the election (C, V ∪{s})? For Borda,
though, they showed that this problem is easy to solve: A
simple greedy algorithm solves CM for Borda in polyno-
mial time. In fact, this greedy algorithm works for every vot-
ing rule that can be represented by a scoring function that is
both responsive (i.e., candidates with highest score win) and
monotonic (i.e., moving a candidate to a better position in
a preference ranking cannot result in this candidate scoring
fewer points). On the other hand, they showed that another
voting rule, “second-order Copeland,” resists manipulation
in the sense that CM for it is NP-complete. Bartholdi III
and Orlin (1991) established that for the voting rule STV
(“single transferrable vote”) CM is NP-complete as well.2

Conitzer, Sandholm, and Lang (2007) generalize CM in
two ways: First, they allow voters to be weighted and, sec-
ond, they consider coalitions of manipulators, leading to
the constructive coalitional weighted manipulation problem
(CCWM), where the weights and preferences of the honest
voters but only the manipulators’ weights are given. For ex-
ample, suppose that in the election given above v1, . . . , v4
are honest voters with weight 2 each, whereas v5 and v6
both have weight 1 and form a coalition of manipulators who
wish to make their favorite candidate, c, win. Casting their
truthful votes, c b d a e for v5 and c d b a e for v6, would re-
sult in d (with 29 points) beating c (with 26 points) and also
a, b, and e (with even fewer points). But if v5 and v6 cast
strategic votes (e.g., both c a b e d), they would make c (still

2Rothe and Schend (2013) note that the reduction of Bartholdi
III and Orlin (1991) is slightly flawed but can be easily fixed.

with a score of 26 points, but d now scoring only 24 points
and a, b, and e even less) the Borda winner of the election.

Conitzer, Sandholm, and Lang (2007) show that CCWM
is NP-complete for Borda even when there are only three
candidates (and is in P for up to two candidates). Similar re-
sults for CCWM have been obtained for many other voting
rules, such as plurality, veto, Copeland, maximin, and STV
(Conitzer, Sandholm, and Lang 2007), Baldwin’s and Nan-
son’s variants of Borda that we will again consider later on
(Davies et al. 2014), and Bucklin and fallback voting (Fal-
iszewski et al. 2015) (we omit defining all these rules due to
space limitations, but refer to the book chapters by Conitzer
and Walsh (2016) and Baumeister and Rothe (2015)). An
interesting special case occurs for the Copeland rule3 with
three candidates: While CCWM for it is in P for the unique-
winner model (which requires the distinguished candidate c
to be the only winner for the manipulation attack to be suc-
cessful), Faliszewski, Hemaspaandra, and Schnoor (2008)
show that this problem is NP-complete in the nonunique-
winner model (where c may be one among several winners
for the manipulation attack to be successful). The known
complexity results for CCWM with respect to all other vot-
ing rules considered are the same in both winner models.

Borda is a very prominent member of a whole class of
important voting rules, the so-called scoring protocols, that
also contains plurality and veto. A scoring protocol for m
candidates is defined by a scoring vector σ = (σ1, . . . , σm)
of nonnegative integers, σ1 ≥ · · · ≥ σm, where a candi-
date in the ith position of a vote gets σi points, and who-
ever has the most points wins. Borda is thus defined via
(m−1,m−2, . . . , 0), plurality via (1, 0, . . . , 0), and veto via
(1, . . . , 1, 0). Hemaspaandra and Hemaspaandra (2007) es-
tablished the following dichotomy result (which for the case
of three candidates was also observed by Conitzer, Sand-
holm, and Lang (2007)): CCWM is in P for plurality and the
trivial scoring protocol with vector (0, . . . , 0), and is NP-
complete for all other scoring protocols.

So far we have considered only the constructive case
where the goal of the manipulator(s) is to make a given can-
didate win. Conitzer, Sandholm, and Lang (2007) were the
first to define the destructive variant where the goal is to
block a given candidate’s victory. The destructive analogue
of CCWM, denoted by DCWM, has also been studied for
most of the voting rules mentioned above. It turns out that
DCWM is never harder than CCWM, but it can be easier.
For example, Conitzer, Sandholm, and Lang (2007) showed
that DCWM for Borda is in P, and this holds true for each
voting rule that can be represented by a scoring function that
is both responsive and monotonic and whose winners can
be determined in polynomial time. By contrast, they also
showed that DCWM for STV (which is not monotonic) is
NP-complete even for three candidates.

Coming back to constructive manipulation for Borda, we
have seen that CCWM is NP-hard, yet CM is easy to solve.

3In a Copeland election, each candidate who is preferred to an-
other candidate by a majority of voters earns one point in this head-
on-head contest; for each tie, they both earn half a point; and the
candidates with the most points win.
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But what about the intermediate case, the case where voters
are unweighted and still there is a coalition of manipulators?
Denote this problem by CCUM. Its complexity for Borda
has been a mystery for several years. Then, in 2011, two
papers resolved this open question independently at about
the same time: Betzler, Niedermeier, and Woeginger (2011)
and Davies et al. (2011; 2014) showed that CCUM is NP-
complete even when there are only two manipulators. In-
deed, this was one of the greatest moments in computational
social choice: Betzler, Niedermeier, and Woeginger (2011)
presented their work in the IJCAI 2011 Distinguished Pa-
pers session, and Davies et al. (2011) were honored by an
AAAI 2011 Outstanding Paper Award.

Zuckerman, Procaccia, and Rosenschein (2009) consid-
ered an optimization variant of CCUM, denoted by CCUO:
Given the unweighted votes of sincere voters and a distin-
guished candidate c, determine the minimum number of ma-
nipulators needed in order to make c win. They designed an
efficient algorithm that approximates CCUO for Borda up
to an additive error of one. They also studied the weighted
variant, noting that a shortcoming of NP-hardness results is
that they are worst-case complexity results only, thus pro-
viding a “poor obstacle against potential manipulators,” as
these may still be able to succeed in typical settings. Instead,
Zuckerman, Procaccia, and Rosenschein (2009) took a dif-
ferent approach: They designed efficient heuristics, char-
acterized “small windows” of instances where these may
fail, and proved that they are correct on all other instances.
For Borda, they showed that if there is a manipulation for
an instance with certain weights, their heuristics will suc-
ceed when given an extra manipulator with maximal weight.
Rothe and Schend (2013) survey this and other approaches
to dealing with challenges to complexity shields that are sup-
posed to protect elections against manipulative attacks.

2.2 Control
While one may feel a bit uneasy about manipulators strate-
gically changing the outcome of an election, there is actu-
ally not much one could put forward against it. After all, ev-
ery voter—human or software agent—has the right to think
strategically about which vote to cast; not doing so would
not be smart. Electoral control, however, is better suitable
than manipulation as a model of electoral fraud or vote
rigging—in the sense of acts that are considered ethically
unacceptable, outside the spirit of an election, or in viola-
tion of the principles of democracy. Here we assume that an
external authority, called the (election) chair, seeks to influ-
ence the outcome of an election via exerting certain control
actions. Bartholdi III, Tovey, and Trick (1992) were the first
to introduce control attacks (such as constructive control
by deleting voters) and their associated decision problems
(CCDV): Given an election (C, V ), a distinguished candi-
date c ∈ C, and a nonnegative integer k, is it possible for
the chair to make c win by deleting up to k votes from V ?
For example, in the election (C, V ) considered above, with
C = {a, b, c, d, e} and V = (v1, . . . , v5), we have seen that
d is the only Borda winner. However, by deleting just one
voter, namely v3, the chair can ensure that now c alone wins.

The other control actions/problems studied by Bartholdi

III, Tovey, and Trick (1992) (which due to space limita-
tions will not be defined in detail here) are constructive
control by adding voters (CCAV), constructive control by
partition of voters (CCPV), constructive control by deleting
candidates (CCDC), constructive control by adding candi-
dates (CCAC), constructive control by partition of candi-
dates (CCPC), and constructive control by run-off partition
of candidates (CCRPC). Each such control type captures
a particular way of rigging elections. For example, CCDV
models voter disenfranchisement; by adding spoiler candi-
dates in CCAC, the chair seeks to weaken the rivals of her
favorite candidate; and partition of voters in CCPV (which
is formalized as a two-stage election where the electorate is
partitioned to create two subelections whose winners face
each other in the final run-off) is a (rather simple) model
of gerrymandering, a common practice to achieve an ad-
vantage from suitably shifting the boundaries of voting dis-
tricts.4 Similar scenarios motivate the other control types.

The control-by-partition cases come in two variants each
by using a rule that specifies how to handle ties in their first-
stage subelections: Either all subelection winners move for-
ward to the final run-off (ties promote, TP) or only unique
subelection winners move forward (ties eliminate, TE). This
distinction is due to Hemaspaandra, Hemaspaandra, and
Rothe (2007), who also introduce the destructive analogues
of these control types: DCDV, DCAV, DCPV, DCDC,
DCAC, DCPC, and DCRPC.5

Bartholdi III, Tovey, and Trick (1992) classified the com-
plexity of the constructive control problems for Condorcet
voting and plurality; Hemaspaandra, Hemaspaandra, and
Rothe (2007) did so for their destructive variants, and also
for constructive and destructive control in approval voting;
Faliszewski et al. (2009) studied the complexity of control
for Copelandα;6 Menton (2013) for (normalized) range vot-
ing; and Erdélyi et al. (2015) for Bucklin and fallback vot-
ing. Interestingly, unlike for manipulation, some voting rules
are immune to certain control actions. For example, Con-
dorcet is immune to constructive control by adding candi-
dates and to destructive control by deleting or partitioning
candidates, and the same applies to plurality and range vot-
ing. If a voting rule it not immune to a control type, it is
susceptible to it, and in this case it makes sense to deter-
mine the complexity of the corresponding control problem.
Among natural voting rules with a winner problem in P,

4More natural or sophisticated models of gerrymandering were
considered, e.g., by Puppe and Tasnádi (2009), Erdélyi, Hema-
spaandra, and Hemaspaandra (2015), and Bachrach et al. (2016).

5Hemaspaandra, Hemaspaandra, and Menton (2013) observed
that, depending on the tie-handling rule (TP vs. TE) and the winner
model (nonunique vs. unique winner) used, DCPC and DCRPC
can be the same problem. The difference between control by par-
tition and by run-off partition of candidates is that in the latter the
winners of both subelections run against each other in the final run-
off, whereas in the former the winners of one subelection face all
candidates of the other subelection in the final round.

6Copelandα generalizes Copeland by rewarding each tie be-
tween candidates in a head-on-head contest with α points, α ∈
Q ∩ [0, 1]. Copeland0.5 is the common Copeland rule (see Foot-
note 3). Copeland1 was proposed by Ramon Llull as early as 1299.
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Table 1: Overview of control complexity in Borda elections

Control type Result Source

CCDV NPC Hemaspaandra and Schnoor (2016)
CCAV NPC Russel (2007)
CCPV-TP NPC Neveling and Rothe (2017a)
CCPV-TE NPC Neveling and Rothe (2017b)

CCDC NPC Chen et al. (2015)
CCAC NPC Elkind, Faliszewski, and Slinko (2011)
CCPC-TP NPC Neveling and Rothe (2017a)
CCPC-TE NPC Neveling and Rothe (2017a)
CCRPC-TP NPC Neveling and Rothe (2017a)
CCRPC-TE NPC Neveling and Rothe (2017b)

DCDV P Russel (2007)
DCAV P Russel (2007)
DCPV-TP NPC Neveling and Rothe (2017a)
DCPV-TE P Russel (2007)

DCDC P Loreggia et al. (2015)
DCAC P Loreggia et al. (2015)
DCPC-TP ?
DCPC-TE P Neveling and Rothe (2017a)
DCRPC-TP NPC Neveling and Rothe (2017a)
DCRPC-TE P Neveling and Rothe (2017a)

normalized range voting (Menton 2013) and fallback vot-
ing (Erdélyi et al. 2015) display the broadest resistance (in
the sense of NP-completeness, denoted by NPC) to control
currently known: They are vulnerable (i.e., the associated
control problem is in P) to only two control types (DCDV
and DCAV) and resistant in all other cases. Due to space
limitations, we omit stating all related results explicitly (or
citing all papers with results on the complexity of control)
but instead refer to the book chapters by Faliszewski and
Rothe (2016) and Baumeister and Rothe (2015).

What about the control complexity in Borda elections? A
closer look at the two book chapters just mentioned reveals
that only nine of the many control scenarios had been solved
for Borda by 2016. However, almost all other cases could be
settled in two recent papers by Neveling and Rothe (2017b;
2017a). Table 1 gives an overview of the control complex-
ity in Borda elections in the unique-winner model.7 Borda
is resistant to all constructive control cases, and is vul-
nerable in all destructive control cases except DCRPC-TP
and DCPV-TP. The complexity of DCPC-TP, indicated by
a question mark, is still open. Interestingly, Neveling and
Rothe (2017a) show that Borda is vulnerable to this con-
trol type (i.e., DCPC-TP is in P) in the nonunique-winner
model. As a consequence of Footnote 5, DCRPC-TP for
Borda is in P in the nonunique-winner model as well, yet
is NP-hard in the unique-winner model. Again, Rothe and
Schend (2013) survey various approaches to dealing with
challenges to NP-hardness shields against control attacks.

Neveling and Rothe (2017b) also consider online can-

7NP-completeness of CCDV has been shown by Neveling
and Rothe (2017b) as well; however, as they learned later, this
already follows from a dichotomy result of Hemaspaandra and
Schnoor (2016) for this problem in the class of scoring protocols.

didate control in sequential Borda elections—a dynamic,
partial-information model due to Hemaspaandra, Hema-
spaandra, and Rothe (2017) where the candidates show up
in sequence, one after the other, the votes being gradually
extended to add the current candidate in each step, and the
chair must decide right now whether or not to exert the given
control action (e.g., to either delete the current candidate
now or never). That is, the chair has a “use-it-or-lose-it abil-
ity” to exert control. Extending the corresponding results for
sequential plurality due to Hemaspaandra, Hemaspaandra,
and Rothe (2017), Neveling and Rothe (2017b) show that
sequential Borda is vulnerable to online constructive and de-
structive control by either adding or deleting candidates.

2.3 Bribery
Another way to fiddle around with elections so as to change
their outcome to one’s own advantage is bribery, a model
proposed by Faliszewski, Hemaspaandra, and Hemaspaan-
dra (2009), see also (Faliszewski et al. 2009): A briber seeks
to influence the outcome of an election by bribing certain
voters without exceeding a given budget. Bribery shares cer-
tain features with manipulation and others with control, e.g.,
the briber is an external actor who needs to choose which
votes to affect as in control, and as in manipulation the briber
needs to find suitable preference orders when changing these
bribed votes. In the decision problem associated with the
most basic variant of bribery, denoted by BRIBERY, we are
given an election (C, V ), a distinguished candidate c ∈ C, a
budget B ∈ N, and a collection (χ1, . . . , χn) of cost func-
tions, one for each voter. For each i, 1 ≤ i ≤ n, and each
preference order over C, χi gives the cost of convincing the
ith voter to cast this preference order instead of her orig-
inal one, where we assume that keeping the original vote
always has zero cost. We ask whether there is a preference
profile V ′ such that c wins in (C, V ′) and the sum of the
costs of changed votes doesn’t exceed B. While “bribery”
commonly has a rather negative connotation, it can also be
positively interpreted, as, e.g., Faliszewski et al. (2015) do,
in terms of “campaign management” where the manager of
a political campaign seeks to convince voters to change their
votes and these efforts have certain costs.

For an example, look again at the election (C, V ) consid-
ered above, with C = {a, b, c, d, e}, V = (v1, . . . , v5), and
the Borda winner d scoring 14 points. Assume that a (with
6 points currently) is our distinguished candidate, the bud-
get is 2, and all voters have unit cost. Then a can be made
a unique Borda winner by bribing, e.g., v2 and v3 to change
their votes to a e b c d and a e b d c, yielding a score of 12
for a, of 9 for b, of 11 for c, of 7 for d, and of 11 for e. If the
budget were 1, though, no bribery action would be success-
ful, as by bribing only one voter, a could gain only 3 points
(giving a score of at most 9), but d could lose no more than
four points (giving a score of at least 10).

Among many other results, Faliszewski, Hemaspaandra,
and Hemaspaandra (2009) established a dichotomy result in
the class of scoring protocols: For each σ = (σ1, . . . , σm),
if σ2 = · · · = σm then the weighted variant of BRIBERY
for σ is in P; otherwise, it is NP-complete. In particular,
weighted BRIBERY for Borda with three or more candidates
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is NP-complete. Brelsford et al. (2008) proved that even in
the unweighted case, BRIBERY for Borda is NP-complete
and also provided an inapproximability result for bribery.

Elkind, Faliszewski, and Slinko (2009) defined another
variant of the bribery problem, denoted SWAP-BRIBERY
(which generalizes the manipulation problem CCUM con-
sidered earlier), where the briber has to pay for each individ-
ual swap of adjacent candidates in the votes separately. They
showed that SWAP-BRIBERY for Borda (and many other
voting rules) is NP-complete. That was why they also intro-
duced the special variant SHIFT-BRIBERY, which is defined
like SWAP-BRIBERY except that each swap must involve
the distinguished candidate. Still, they showed that SHIFT-
BRIBERY for Borda is NP-complete, yet can be efficiently
approximated to within a factor of 2 (which was generalized
by Elkind and Faliszewski (2010) for all scoring protocols).
Recently, Maushagen et al. (2018) studied the complexity of
SHIFT-BRIBERY for iterative voting rules such as those by
Baldwin (1926) and Nanson (1882), and showed that they
are NP-complete as well. These two voting rules proceed in
rounds and eliminate in each round the candidates perform-
ing worst (namely, the candidates with lowest Borda score in
Baldwin and those with scores lower than the average Borda
score in Nanson), and the remaining candidates win.

The complexity of bribery has been studied for many
other voting rules as well; for instance, Faliszewski et
al. (2009) studied bribery in Copelandα elections. Due to
space limitations, we again omit stating all these results and
papers, referring to the book chapters by Faliszewski and
Rothe (2016) and Baumeister and Rothe (2015) instead.

3 Using Borda beyond Voting
We now leave voting behind and turn to two recent applica-
tions of the Borda rule in other fields of collective decision
making: social welfare maximization in the allocation of in-
divisible goods and coalition formation in hedonic games.

3.1 Allocation of Indivisible Goods
Allocating indivisible goods to agents having preferences
over (bundles of) goods is an important field at the inter-
section of AI and economics. There are tons of literature on
the allocation of indivisible goods, which cannot all be cited
here; instead we refer to the book chapters by Bouveret,
Chevaleyre, and Maudet (2016) and Lang and Rothe (2015).

Let N = {1, . . . , n} be a set of agents and G a set of m
goods. An allocation of G to N is a partition (π1, . . . , πn)
of G (i.e., G =

⋃n
i=1 πi and πi ∩ πj = ∅ for i 6= j), where

πi is the bundle of goods assigned to agent i. A common
approach to how agents value their bundles is to assume ad-
ditive preferences: Every agent i assigns a positive number
to each good and i’s utility for a bundle of goods is the sum
of the corresponding numbers. Here, however, we take a dif-
ferent approach: We assume that agents have ordinal pref-
erences over G, i.e., a ranking of the goods, and the agents’
utilities are now specified by a fixed, agent-independent vec-
tor that maps ranks into scores just as in voting. In particu-
lar, Brams, Edelman, and Fishburn (2003) (and later Brams
and King (2005) and Bouveret, Endriss, and Lang (2010))

studied Borda-optimal allocations.8 Baumeister et al. (2017)
generalized these by introducing scoring allocation corre-
spondences, which informally stated proceed in three steps:
First, we use a scoring vector σ = (σ1, . . . , σm) to derive
from the agents’ preferences a utility vector for each possi-
ble allocation π, thus specifying each agent’s individual util-
ity for π. Second, these individual utilities are aggregated via
an aggregation function (typically, via utilitarian or egalitar-
ian social welfare, i.e., by using the sum or the minimum of
the agents’ individual utilities) to obtain the collective utility
of π. Third, we choose the outcomes π that maximize col-
lective utility. (If desired, one can break ties so as to yield a
scoring allocation rule, which always outputs only one allo-
cation π maximizing collective utility.)

Brams, Edelman, and Fishburn (2003) study properties
of Borda-optimal allocations such as envy-freeness (i.e.,
no agent wants to swap her bundle) and Pareto optimality
(where an allocation is Pareto-optimal w.r.t. the agents’ pref-
erences if no other allocation can make some agent better off
without making some other agent worse off). For example,
they show that Borda-optimal allocations (w.r.t. the “leximin
order”) are always possibly Pareto-optimal, whereas they in
general fail to be necessarily Pareto-optimal—notions that
are closely related to the notions of possible and necessary
winner in voting due to Konczak and Lang (2005).

Baumeister et al. (2017) study both axiomatic and com-
putational properties of scoring allocation correspondences
and rules. For example, they show that Borda scoring (with
egalitarian social welfare and any tie-breaking relation) sat-
isfies monotonicity, yet does not satisfy what they call
“global monotonicity,” “possible object monotonicity,” and
“separability.” And that, given the agents’ preferences, the
problem of whether there is an allocation whose egalitar-
ian social welfare exceeds a given value is NP-complete for
Borda. Nguyen, Baumeister, and Rothe (2018) characterize
strategy-proofness, as defined by Kelly (1977), for scoring
allocation correspondences with utilitarian social welfare.
For Borda, their result implies that strategy-proofness holds
if and only if there are no more than two goods.

3.2 Forming Coalitions in FEN-Hedonic Games
Hedonic games, as part of cooperative game theory, model
how players, each having preferences about the coalitions
they can join, form coalitions. For more background, we
refer to the book chapters by Aziz and Savani (2016) and
Elkind and Rothe (2015). One problem is how to represent
hedonic games, given that each player can join exponen-
tially many (in the number of players) coalitions. Lang et
al. (2015) list a number of approaches from the literature for
how to deal with this problem, e.g., the friend- and enemy-
oriented encodings due to Dimitrov et al. (2006). Lang et
al. (2015) extend their approach by also allowing neutral
players and define FEN-hedonic games: Each player parti-

8Unlike for Borda in voting, they here use the scoring vector
(m,m−1, . . . , 1) to ensure that each good has some positive value.
In voting, such a shift of scores would not matter (Hemaspaan-
dra and Hemaspaandra 2007). For the allocation problem, however,
Baumeister et al. (2017) show that such a shift actually does matter.
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tions the set of other players into friends, enemies, and neu-
tral players and ranks her friends and enemies. They assume
preferences to be monotonic w.r.t. adding friends and anti-
monotonic w.r.t. adding enemies and use “bipolar respon-
sive extensions” to lift the players’ rankings of players to
their partial preferences over coalitions. Rothe, Schadrack,
and Schend (2018) (see also Section 5.2 in the conference
version by Lang et al. (2015)) then employ cardinal com-
parability functions based on scoring vectors so as to ex-
tend partial to complete preference orders consistent with
these bipolar responsive orders. Focusing on Borda-induced
FEN-hedonic games, they study the complexity of the exis-
tence and the verification problem for common solution con-
cepts; e.g., verifying “Nash stability” is in P and testing if a
Nash-stable coalition structure exists is NP-complete, while
verifying “core stability” is coNP-complete and testing if a
core-stable coalition structure exists is NPNP-complete.

4 Conclusions
We have summarized recent results on how Borda has been
used in collective decision making, ranging from voting (in
particular, manipulation, control, and bribery in elections) to
other fields (allocating indivisible goods to agents and hedo-
nic games). This wide range of applicability is quite aston-
ishing, considering how simple and elegant Borda’s rule is.

We have also surveyed the most central models in com-
putational social choice, a true success story within AI,
and have mentioned some of the most important results for
other voting rules alongside Borda. While most questions for
Borda have been settled by now, there are still some open is-
sues, e.g., the question mark in Table 1 for DCPC-TP.

Establishing hardness in typical settings rather than
merely worst-case hardness results is still a great challenge
in manipulation, control, and bribery. More generally, we
propose to keep looking for new applications of this vintage
voting rule in other fields and domains.
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